施策デザインのための機械学習入門〜データ分析技術のビジネス活用における正しい考え方
CRANK
予測に基づいた広告配信や商品推薦など,ビジネス施策の個別化や高性能化のために機械学習を利用することが一般的になってきています。その一方で,多くの機械学習エンジニアやデータサイエンティストが,手元のデータに対して良い精度を発揮する予測モデルを得たにもかかわらず,実際のビジネス現場では望ましい結果を得られないという厄介で不可解な現象に直面しています。実はこの問題は,機械学習の実践において本来必要なはずのステップを無視してしまうことに起因すると考えられます。機械学習を用いてビジネス施策をデザインする際に本来踏むべき手順を無視して予測精度の改善だけを追い求めると,「解くべき問題の誤設定」や「バイアス」といった落とし穴に気づかぬうちにハマってしまうのです。 この問題を解決するためには,機械学習のビジネス応用において必要となる前提条件を着実にクリアしなくてはなりません。しかし多くの現場では,「学習」や「予測精度」などに関する手法やテクニックのみに注目してしまう傾向があり,「機械学習にどのような問題を解かせるべきなのか」「実環境と観測データの間の乖離(バイアス)の問題にどのように対処すべきか」とい…
3 comments