A Stealthy Hardware Trojan Exploiting the Architectural Vulnerability of Deep Learning Architectures: Input Interception Attack (IIA)
DRANK
Deep learning architectures (DLA) have shown impressive performance in computer vision, natural language processing and so on. Many DLA make use of cloud computing to achieve classification due to the high computation and memory requirements. Privacy and latency concerns resulting from cloud computing has inspired the deployment of DLA on embedded hardware accelerators. To achieve short time-to-market and have access to global experts, state-of-the-art techniques of DLA deployment on hardware accelerators are outsourced to untrusted third parties. This outsourcing raises security concerns as hardware Trojans can be inserted into the hardware design of the mapped DLA of the hardware accelerator. We argue that existing hardware Trojan attacks highlighted in literature have no qualitative means how definite they are of the triggering of the Trojan. Also, most inserted Trojans show a obvious spike in the number of hardware resources utilized on the accelerator at the time of triggering th…